Math 246C Lecture 10 Notes

Daniel Raban

April 22, 2019

1 Simply Connectedness of Universal Covering Spaces and Green's Functions

1.1 Simply connectedness of universal covering spaces

Last time, we were proving the existence of universal covering spaces.

Theorem 1.1. Let X be a connected topological manifold. Then there exists a simply connected manifold \tilde{X} and a covering map $p: \tilde{X} \to X$.

Proof. Let $\tilde{X} = \{(x, [\sigma]) : \sigma \text{ is a path in } X \text{ from } x_0 \text{ to } x\}$. We have shown that $p : \tilde{X} \to X$ sending $(x, [\sigma]) \mapsto x$ is a covering map. We claim that \tilde{X} is simply connected. When |sigma is a path in X from x_0 to $x \in X$, consider the path in $\tilde{X}: \sigma': [0, 1] \to X$ with $\sigma'(s) = (\sigma(s), [t \mapsto \sigma(ts)]) \in \tilde{X}$. Then $\sigma'(0) = (x_0, [\varepsilon_{x_0}])$ (where ε_{x_0} is the constant path at x_0), and $\sigma'(1) = (x, [\sigma])$. Moreover, $p \circ \sigma' = \sigma$. So \tilde{X} is path-connected.

Let σ'' be a closed path in \tilde{X} with $\sigma''(0) = \sigma''(1) = (x_0, [\varepsilon_{x_0}])$. Then $\sigma := p \circ \sigma''$ is a closed path in X starting and ending at x_0 . The path σ can be lifted to \tilde{X} , and by the uniqueness of lifts, σ'' sends $[0,1] \ni s \mapsto (\sigma(s), [t \mapsto \sigma(st)]) \in \tilde{X}$. Thus, $(x_0, [\varepsilon_{x_0}]) =$ $\sigma''(0) = \sigma''(1) = (x, [\sigma])$, so σ is null-homotopic in X. By the homotopy lifting theorem, σ'' is null-homotopic in \tilde{X} .

1.2 Green's functions in \mathbb{C}

We want to prove the uniformization theorem:

Theorem 1.2 (Poincaré, Koebe). Let X be a simply connected Riemann surface. Then X is complex diffeomorphic to $\hat{\mathbb{C}}$, \mathbb{C} , or the unit disc $D \subseteq \mathbb{C}$.

Here is the starting point of the proof. We will try to construct a Green's function for X. Recall the notion of a Green's function for an open, bounded $\Omega \subseteq \mathbb{C}$ with C^2 boundary.

Definition 1.1. We say that G(x, y) for $x \in \Omega$, $y \in \overline{\Omega}$ is a **Green's function** for Ω if

- 1. $G(x,y) = \frac{1}{2\pi} \log |x-y| + h_x(y)$, where $h_x \in C^2(\overline{\Omega})$ is harmonic in Ω .
- 2. G(x,y) = 0 for $y \in \partial \Omega$.

Remark 1.1. If G exists, it is unique. The function $y \mapsto G(x, y)$ is subharmonic in Ω . By the maximum principle, G(x, y) < 0 for all $(x, y) \in \Omega \times \Omega$.

Assume that G(x, y) exists, and let $u \in C^2(\overline{\Omega})$ with $u|_{\partial\Omega}$. Cut out a small disc around x to get $\Omega_{\varepsilon} = \{y \in \Omega : |x - y| > \varepsilon\}$. By Green's formula,

$$\begin{split} \int_{\Omega_{\varepsilon}} (u(y)\Delta_{y}G(x,y) - G(x,y)\Delta u(y)) &= \int_{\partial\Omega_{\varepsilon}} \left(u(y)\frac{\partial G(x,y)}{\partial n_{y}} - G(x,y)\frac{\partial u}{\partial n_{y}} \right) \, ds(y) \\ &= \int_{\partial\Omega} + \int_{S_{\varepsilon}}, \end{split}$$

where n is the unit outgoing vector, normal to $\partial \Omega_{\varepsilon}$, and $S_{\varepsilon} = \{y : |y - x| = \varepsilon\}$. Consider

$$\int_{S_{\varepsilon}} -\underbrace{G(x,y)}_{=O(\log(1/\varepsilon))} \frac{\partial u}{\partial n_y} \underbrace{ds(y)}_{=O(\varepsilon)} = O(\varepsilon \log(1/\varepsilon)) \xrightarrow{\varepsilon \to 0} 0.$$

Compute also

$$\begin{split} \int_{S_{\varepsilon}} u(y) \nabla_y \left(\frac{1}{2\pi} \log |x - y| + h_x(y) \right) \frac{-(y - x)}{|y - x|} \, ds(y) \\ &= \int_{s_{\varepsilon}} u(y) \left(\frac{1}{2\pi} \frac{1}{|y - x|} \frac{y - x}{|y - x|} \frac{-(y - x)}{|y - x|} + O(1) \right) \, ds(y) \\ &= -\frac{1}{2\pi\varepsilon} \int_{s_{\varepsilon}} u(y) \, ds(y) + o(1) \\ &\xrightarrow{\varepsilon \to 0^+} - u(x). \end{split}$$

The left hand side in Green's formula equals

$$-\int_{\Omega_{\varepsilon}} G(x,y) \Delta u(y) \, dy \to \int_{\Omega} \xrightarrow{\varepsilon \to 0^+} \int_{\Omega} -G(x,y) \Delta u(y) \, dy,$$

where we can use the dominated convergence theorem since $G \in L^1_{loc}(\Omega)$. We get

$$u(x) = \int_{\Omega} G(x, y) f(y) \, dy$$

if $f = \Delta u \in C(\overline{\Omega})$. Here, we have used that $u \in C^2(\overline{\Omega})$ and $u|_{\partial\Omega} = 0$.

Assume now that $u \in C_0^2(\mathbb{R}^2)$. Take $\Omega = D(0, R)$ for large R > 0, and let x = 0. Then

$$u(0) = \int G(0,y)\Delta u(y) \, dy = \int \left(\frac{1}{2\pi} \log|y| + h_0(y)\right) \Delta u(y) \, dy.$$

 h_0 is harmonic in D(0, R), so

$$\int h_0 \Delta u(y) \, dy = 0$$

after integrating by parts. So we get that

$$\int E(y)\Delta u(y) \, dy = u(0), \qquad E(y) = \frac{1}{2\pi} \log|y|$$

for all $u \in C_0^2(\mathbb{C})$. When this formula holds, we say that E is a **fundamental solution** of Δ , and we write $\Delta E = \delta_0$, where δ_0 is the Dirac measure at 0: $\delta_0(u) = u(0)$.

To construct G(x, y) for a given Ω , we need to solve

$$\Delta_y h_x(y) = 0$$

in Ω with the boundary condition

$$\left(h_x + \frac{1}{2\pi} \log|x - \cdot|\right)_{\partial\Omega} = 0.$$

This can be solved using Perron's method. We will extend Perron's method to a Riemann surface and construct a Green's function using this method.