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1 Simply Connectedness of Universal Covering Spaces and
Green’s Functions

1.1 Simply connectedness of universal covering spaces

Last time, we were proving the existence of universal covering spaces.

Theorem 1.1. Let X be a connected topological manifold. Then there exists a simply
connected manifold X̃ and a covering map p : X̃ → X.

Proof. Let X̃ = {(x, [σ]) : σ is a path in X from x0 to x}. We have shown that p : X̃ → X
sending (x, [σ]) 7→ x is a covering map. We claim that X̃ is simply connected. When
|sigma is a path in X from x0 to x ∈ X, consider the path in X̃: σ′ : [0, 1] → X with
σ′(s) = (σ(s), [t 7→ σ(ts)]) ∈ X̃. Then σ′(0) = (x0, [εx0 ]) (w here εx0 is the constant path
at x0), and σ′(1) = (x, [σ]). Moreover, p ◦ σ′ = σ. So X̃ is path-connected.

Let σ′′ be a closed path in X̃ with σ′′(0) = σ′′(1) = (x0, [εx0 ]). Then σ := p ◦ σ′′ is
a closed path in X starting and ending at x0. The path σ can be lifted to X̃, and by
the uniqueness of lifts, σ′′ sends [0, 1] 3 s 7→ (σ(s), [t 7→ σ(st)]) ∈ X̃. Thus, (x0, [εx0 ]) =
σ′′(0) = σ′′(1) = (x, [σ]), so σ is null-homotopic in X. By the homotopy lifting theorem,
σ′′ is null-homotopic in X̃.

1.2 Green’s functions in C

We want to prove the uniformization theorem:

Theorem 1.2 (Poincaré, Koebe). Let X be a simply connected Riemann surface. Then
X is complex diffeomorphic to Ĉ, C, or the unit disc D ⊆ C.

Here is the starting point of the proof. We will try to construct a Green’s function for
X. Recall the notion of a Green’s function for an open, bounded Ω ⊆ C with C2 boundary.

Definition 1.1. We say that G(x, y) for x ∈ Ω, y ∈ Ω is a Green’s function for Ω if
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1. G(x, y) = 1
2π log |x− y|+ hx(y), where hx ∈ C2(Ω) is harmonic in Ω.

2. G(x, y) = 0 for y ∈ ∂Ω.

Remark 1.1. If G exists, it is unique. The function y 7→ G(x, y) is subharmonic in Ω. By
the maximum principle, G(x, y) < 0 for all (x, y) ∈ Ω× Ω.

Assume that G(x, y) exists, and let u ∈ C2(Ω) with u|∂Ω. Cut out a small disc around
x to get Ωε = {y ∈ Ω : |x− y| > ε}. By Green’s formula,∫

Ωε

(u(y)∆yG(x, y)−G(x, y)∆u(y)) =

∫
∂Ωε

(
u(y)

∂G(x, y)

∂ny
−G(x, y)

∂u

∂ny

)
ds(y)

=
�
�
��7

0∫
∂Ω

+

∫
Sε

,

where n is the unit outgoing vector, normal to ∂Ωε, and Sε = {y : |y − x| = ε}. Consider∫
Sε

− G(x, y)︸ ︷︷ ︸
=O(log(1/ε))

∂u

∂ny
ds(y)︸ ︷︷ ︸
=O(ε)

= O(ε log(1/ε))
ε→0−−−→ 0.

Compute also∫
Sε

u(y)∇y
(

1

2π
log |x− y|+ hx(y)

)
−(y − x)

|y − x|
ds(y)

=

∫
sε

u(y)

(
1

2π

1

|y − x|
y − x
|y − x|

−(y − x)

|y − x|
+O(1)

)
ds(y)

= − 1

2πε

∫
sε

u(y) ds(y) + o(1)

ε→0+−−−−→ −u(x).

The left hand side in Green’s formula equals

−
∫

Ωε

G(x, y)∆u(y) dy →
∫

Ω

ε→0+−−−−→
∫

Ω
−G(x, y)∆u(y) dy,

where we can use the dominated convergence theorem since G ∈ L1
loc(Ω). We get

u(x) =

∫
Ω
G(x, y)f(y) dy

if f = ∆u ∈ C(Ω). Here, we have used that u ∈ C2(Ω) and u|∂Ω = 0.
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Assume now that u ∈ C2
0 (R2). Take Ω = D(0, R) for large R > 0, and let x = 0. Then

u(0) =

∫
G(0, y)∆u(y) dy =

∫ (
1

2π
log |y|+ h0(y)

)
∆u(y) dy.

h0 is harmonic in D(0, R), so ∫
h0∆u(y) dy = 0

after integrating by parts. So we get that∫
E(y)∆u(y) dy = u(0), E(y) =

1

2π
log |y|

for all u ∈ C2
0 (C). When this formula holds, we say that E is a fundamental solution of

∆, and we write ∆E = δ0, where δ0 is the Dirac measure at 0: δ0(u) = u(0).
To construct G(x, y) for a given Ω, we need to solve

∆yhx(y) = 0

in Ω with the boundary condition(
hx +

1

2π
log |x− ·|

)
∂Ω

= 0.

This can be solved using Perron’s method. We will extend Perron’s method to a Riemann
surface and construct a Green’s function using this method.
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